Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
JMIR Med Inform ; 10(8): e35726, 2022 Aug 01.
Article in English | MEDLINE | ID: covidwho-1974501

ABSTRACT

The management of diagnostic uncertainty is part of every primary care physician's role. e-Safety-netting tools help health care professionals to manage diagnostic uncertainty. Using software in addition to verbal or paper based safety-netting methods could make diagnostic delays and errors less likely. There are an increasing number of software products that have been identified as e-safety-netting tools, particularly since the start of the COVID-19 pandemic. e-Safety-netting tools can have a variety of functions, such as sending clinician alerts, facilitating administrative tasking, providing decision support, and sending reminder text messages to patients. However, these tools have not been evaluated by using robust research designs for patient safety interventions. We present an emergent framework of criteria for effective e-safety-netting tools that can be used to support the development of software. The framework is based on validated frameworks for electronic health record development and patient safety. There are currently no tools available that meet all of the criteria in the framework. We hope that the framework will stimulate clinical and public conversations about e-safety-netting tools. In the future, a validated framework would drive audits and improvements. We outline key areas for future research both in primary care and within integrated care systems.

2.
JMIR Public Health Surveill ; 7(2): e24341, 2021 02 19.
Article in English | MEDLINE | ID: covidwho-1090464

ABSTRACT

BACKGROUND: The Oxford-Royal College of General Practitioners (RCGP) Research and Surveillance Centre (RSC) and Public Health England (PHE) are commencing their 54th season of collaboration at a time when SARS-CoV-2 infections are likely to be cocirculating with the usual winter infections. OBJECTIVE: The aim of this study is to conduct surveillance of influenza and other monitored respiratory conditions and to report on vaccine uptake and effectiveness using nationally representative surveillance data extracted from primary care computerized medical records systems. We also aim to have general practices collect virology and serology specimens and to participate in trials and other interventional research. METHODS: The RCGP RSC network comprises over 1700 general practices in England and Wales. We will extract pseudonymized data twice weekly and are migrating to a system of daily extracts. First, we will collect pseudonymized, routine, coded clinical data for the surveillance of monitored and unexpected conditions; data on vaccine exposure and adverse events of interest; and data on approved research study outcomes. Second, we will provide dashboards to give general practices feedback about levels of care and data quality, as compared to other network practices. We will focus on collecting data on influenza-like illness, upper and lower respiratory tract infections, and suspected COVID-19. Third, approximately 300 practices will participate in the 2020-2021 virology and serology surveillance; this will include responsive surveillance and long-term follow-up of previous SARS-CoV-2 infections. Fourth, member practices will be able to recruit volunteer patients to trials, including early interventions to improve COVID-19 outcomes and point-of-care testing. Lastly, the legal basis for our surveillance with PHE is Regulation 3 of the Health Service (Control of Patient Information) Regulations 2002; other studies require appropriate ethical approval. RESULTS: The RCGP RSC network has tripled in size; there were previously 100 virology practices and 500 practices overall in the network and we now have 322 and 1724, respectively. The Oxford-RCGP Clinical Informatics Digital Hub (ORCHID) secure networks enable the daily analysis of the extended network; currently, 1076 practices are uploaded. We are implementing a central swab distribution system for patients self-swabbing at home in addition to in-practice sampling. We have converted all our primary care coding to Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT) coding. Throughout spring and summer 2020, the network has continued to collect specimens in preparation for the winter or for any second wave of COVID-19 cases. We have collected 5404 swabs and detected 623 cases of COVID-19 through extended virological sampling, and 19,341 samples have been collected for serology. This shows our preparedness for the winter season. CONCLUSIONS: The COVID-19 pandemic has been associated with a groundswell of general practices joining our network. It has also created a permissive environment in which we have developed the capacity and capability of the national primary care surveillance systems and our unique public health institute, the RCGP and University of Oxford collaboration.


Subject(s)
Clinical Protocols , Influenza, Human/prevention & control , Respiratory Tract Infections/prevention & control , Vaccines/therapeutic use , COVID-19/prevention & control , Female , Humans , Influenza, Human/drug therapy , Male , Middle Aged , Population Surveillance/methods , Public Health , Respiratory Tract Infections/drug therapy , Respiratory Tract Infections/virology , United Kingdom , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL